Info
Info
News Article

Golden Scales

News
Nanoscale mass sensor from Berkeley Lab can be used to weigh individual atoms and molecules.
There's a new 'gold standard' in the sensitivity of weighing scales. Using the same technology with which they created the world's first fully functional nanotube radio, researchers with Berkeley Lab and the University of California (UC) at Berkeley have fashioned a nano electro mechanical system (NEMS) that can function as a scale sensitive enough to measure the mass of a single atom of gold.
A double walled carbon nanotube NEMS has been used to measure the mass of a single atom of gold. Atoms landing on the tube change the tube's resonant frequency in proportion to the mass of the atoms, much like what happens when a diver hits a springboard.

Alex Zettl, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division (MSD) and UC Berkeley's Physics Department, where he is the director of the Centre of Integrated Nano mechanical Systems, led this research. Working with him were members of his research group, Kenneth Jensen and Kwanpyo Kim.

"For the past 15 years or so, the holy grail of NEMS has been to push them to a small enough size with high enough sensitivity so that they might resolve the mass of a single molecule or even single atom," Zettl said. "This has been a challenge even at cryogenic temperatures where reduced thermal noise improves the sensitivity. We have achieved sub single atom resolution at room temperature!"

The new NEMS mass sensor consists of a single carbon nanotube that is double walled to provide uniform electrical properties and increased rigidity. One tip of the carbon nanotube is free and the other tip is anchored to an electrode in close proximity to a counter electrode. A DC voltage source, such as from a battery or a solar cell array, is connected to the electrodes. Applying a DC bias creates a negative electrical charge on the free tip of the nanotube. An additional radio frequency wave "tickles" the nanotube, causing it to vibrate at a characteristic "flexural" resonance frequency.

When an atom or molecule is deposited onto the carbon nanotube, the tube's resonant frequency changes in proportion to the mass of the atom or molecule, much like the added mass of a diver changes the flexural resonance frequency of a diving board. Measuring this change in frequency reveals the mass of the impinging atom or molecule.

"Getting nanotubes to vibrate is fairly easy," said Jensen. "The difficult part is detecting those small vibrations. We accomplished this by field emitting, or spraying, electrons from the tip of the nanotube and detecting the resulting electrical current."

Using their NEMS mass sensor, Zettl, Jensen and Kim were able to weigh individual gold atoms and measure masses as small as two fifths that of a gold atom at room temperature and in just a little more than one second of time. A gold atom has a mass of 3.25 x 10-25 kilograms, which means that there are about 3 million million million million gold atoms in a single kilogram.

While there have been other NEMS that function as mass sensors before, most of these previous devices were fashioned from silicon, and none had achieved the magical singleatom resolution at room temperature. The carbon nanotube mass sensor of Zettl's group is a thousand times smaller by volume than typical NEMS resonators, measuring only about a billionth of a metre in diameter and 200 billionths of a meter in length.

Alex Zettl (left) and Kenneth Jensen, using the same technology with which they created the world's first fully functional nanotube radio, have created the world's smallest and most sensitive weighing scale. "Carbon nanotubes are the ideal material for this purpose and their small size makes them sensitive enough to resolve single atoms even at room temperature," Jensen said.

While scientists already have the ability to measure the mass of individual atoms through a complex technique known as mass spectrometry, this new carbon nanotube NEMS mass sensor offers some distinct advantages and opens the door to new possibilities, as Jensen explained.

"Unlike mass spectrometry, our device does not require the ionization of neutral atoms or molecules that can destroy samples such as proteins. Also unlike mass spectrometers, our carbon nanotube mass sensor becomes more sensitive at higher mass ranges, which makes it more suitable for measuring large biomolecules like DNA. Finally, our device is small enough so that, in time, it could be incorporated onto a chip."

Zettl, Jensen and Kim described their NEMS mass sensor in a paper published in the journal Nature Nanotechnology, entitled: "An atomic resolution nano mechanical mass sensor." This research was supported by the U.S. Department of Energy's Office of Science, Basic Energy Sciences Program's Materials Sciences and Engineering Division, and by the National Science Foundation within the Centre of Integrated Nano mechanical Systems.
Sunstore Solar Launches WattGrid, A New Range Of Turnkey Off-grid Power Systems
Ingenious Invests In Electric Vehicle Charging Firm
Everoze Creates Skyray To Design And Engineer Great Solar PV Projects
FIMER Powers UK Largest Rooftop Solar Project
Sharp Launches New 440W Half-cut Cell PV Panel
UK'S Largest Battery Ready To Balance The Grid
Habitat Enerdy Enters Balancing Mechanism With Largest Battery
Sonnedix Named ESG Global Solar Power Generation Sector Leader By GRESB
Power Roll Trials Solar PV To Power Up Himalayan Villages
UK Green Tech Company Myenergi To Double Workforce By 2021
Going Green In Lancashire – Hundreds Of Houses Installed With Solar Panels In Ground-breaking Project
TLT Advises Santander On 30MW Flagship Battery Storage Project
Oakapple Renewable Energy Appoint Stuart Gentry To Head Business Development
Solar Power As Rental Offer Launched By Aggreko
Analysis Of UK Commercial Roof Space Shows Solar PV Film Can Achieve Net Zero Without Greenfield Sites
Greencoat Renewables Announces First Transaction In Nordic Market
Tandem PV Devices Feel The Heat
NextEnergy Capital Acquires Its First Asset In Portugal 17.4MWp Solar PV Project
New Innovation Set To Change Renewable Energy Market
SOLARWATT Links With Easy Roof To Provide Building-integrated PV For Better-looking Buildings And Smart EV Charging
FRV And Harmony Energy To Develop Second UK Utility Scale Battery Project
Low Carbon Develop UK’s Largest Community-owned Solar Park
TLT Advises Innova Energy On £30m Refinancing Of 57 MW Solar Portfolio
The Smarter E South America Postponed To October 18-20, 2021
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Smart Solar Magazine, the Smart Solar Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification} Array
Live Event